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Short Papers

A New Approximation for the Capacitance of a Rectangular-
- Coaxial-Strip Transmission Line

JOHN C. TIPPET, STUDENT MEMBER, IEEE,‘ AND
DAVID C. CHANG, MEMBER, IEEE

Abstract—The method of conformal transformation is used fo obtain
the exact capacitance of a rectangular-coaxial-strip transmission line,
An approximate form, which includes the edge-interaction capacitance
of the strip, is obtained and is shown to reduce in an appropriate limit to
a form obtained by other authors.

INTRODUCTION

In deriving the capacitance of rectangular-coaxial cylinders
whose inner conductor has zero thickness, the method of con-

formal transformation is frequently used to solve for the capac- -

itance of a related problem where one of the side walls is taken to
infinity [1]. To apply this result to the actual problem, a restric-
tion must be placed on the ratio of the width of the inner con-
ductor, 2w, compared to the height of the outer conductor, 2b,
in order that interaction effects from the two edges of the inner
conductor are not significant. However, the error resulting from
such an a priori restriction cannot be assessed. In this short paper
a more general approximation is obtained which reduces to the
one given in [1] when the restriction on w/b, which follows
naturally from this formalism, is made. In addition, the new
approximation allows one to calculate the interaction effect for
a limited range of w/b ratios. The result obtained in this short
paper is directly applicable to the design of a matched TEM
transmission cell currently being developed at the National
Bureau of Standards for susceptibility and radiated emissions
testing of electrically small devices [2].

EXACT CAPACITANCE OF A RECTANGULAR-COAXIAL-STRIP
TRANSMISSION LINE

A cross-sectional view of a rectangular-coaxial-strip trans-
mission line is shown in Fig. 1 with an x-y coordinate system
superimposed.

The strip of width 2w is located symmetrically inside a shielded
enclosure of height 26 and width 2a and is assumed to have
negligible thickness. In addition, the strip is located a distance
g from each vertical side wall and is embedded in a homogeneous
dielectric of permittivity &,. The reason for choosing an un-
symmetrically located coordinate system is to facilitate obtaining
an approximate formula for the capacitance.

To determine the capacitance, the method of conformal trans-
formation will be used, whereby the structure in Fig. 1 is trans-
formed into a simpler configuration whose capacitance is already
known. Since it is well known that capacitance is invariant
under a conformal transformation, the formula obtained will
also be applicable to the shielded stripline configuration of Fig. 1.

Since we have symmetry with respect to the x axis, we will
calculate the capacitance between the upper plate, A-F-E-D and
the stripline, B~C. The total capacitance is then twice this figure,
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Fig. 1. Cross section of a rectangular-coaxial-strip transmission line.

R VIG
+ .‘
D E F

f

> 4+ O
w TR

C
Fig. 2. Complex t plane.

since we have effectively two capacitors in parallel. The region
A-D-E~F may be mapped into the upper half of a complex
¢ plane via the Schwarz—Christoffel transformation [3] which,
due to symmetry, can be expressed in terms of Jacobian elliptic
functions [4, pp. 7-15]. The transformation is given by [4, p. 58]

dr'

:
T fo G = 0 = BrTe @
or alternatively by
t = sn? (mz,k) ¥)]
where sn is a Jacobian elliptic function of modulus &
m= I"((b—kl) 3
and ‘
z=x++ . )]

Here K(k) and K(k’) are complete elliptic integrals of the first
kind of moduli £ and k’, respectively [4, pp. 16-25], and

k= [1 - k*]2, &)
The modulus £ can be determined from the requirement that
Kk)y 2a

(See, for example [5], where the value of k2 is tabulated for a
given ratio, K(k")/K(k).) Under the transformation given by
(2), the region A-D-E-F in the z plane is mapped into the upper
half of the ¢ plane as shown in Fig. 2. Using (2) and elliptic func-
tion identities, « and S can be calculated as

o =sn®>mg = sn?¢ U
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Fig. 3. Complex u plane.

X1

—— K(L) —>

Fig. 4. Complex x plane.

and
B = sn®* m(2a — g) = cn? &/dn? & ®)
where
¢ =mg ©

and cn and dn are also Jacobian elliptic functions each of which
has modulus k. For convenience, we now make an intermediate
transformation from the ¢ plane to a complex « plane defined by

_B(t—«
u_t(ﬂ_a).

The « plane is shown in Fig. 3. 4 in Fig. 3 can be found using (10)
and substituting £ = 1. Thus

(10)

Ry 11)
i b B—a (
and substituting for o and B from (7) and (8), we obtain
2 cnzf — s’ ¢ <21n2 ¢ a2)
‘ cn? &[1 — sn? &]
Using elliptic function identities, (12) reduces to
2 g _ g (08 *
A 1-k (cn : 13)
and defining a complementary modulus, A’, as
No=1 - 222 (14)
we have from (13) and (14)
, , (sn &\?
¥ =k (cn 5) . 15)

In the final transformation, we map the upper half-of the u
plane into a rectangular region in a complex y plane. The trans-

formation is given by
u = sn® (3,4 (16)

and the x plane is shown in Fig. 4. From Fig. 4, it is evident that
the capacitance is just given by the ordinary parailel-plate
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capacitor formula, that is

el ~ K

Therefore, the total capacitance C, of the rectangular-coaxial-
strip transmission line per unit length L is just twice that given
by (17).

C K@)

L= K0y (18)

APPROXIMATE EXPRESSION FOR THE CAPACITANCE

Since (6) and (18) both involve ratios of complete el_liptic
integrals, the following approximation is particularly useful [6]:

K@ 1, (,1+8 2 .
K@) 7" (zl—JE)’ >

Using (19) we can write approximate expressions for (6) and (18),
respectively, as follows:

(19)

2a 1 1+ vk

2a .1, (> N, ws> b (20)
b =z ( 1—«/k)

Cy 2 ( 1+ «/I) 5 -
=0 ~ZIn{2 =), @42 > . @21
gl = 1 -1

Equations (20) and (21) may be written alternatively as

4a 2 )2 _3 - k2
b_nln[2(1+«/k)(l+k)] S~k @)

ﬁ ~ Z J N _ _2_ — 32
At 20 + VA2 + B “in(l - ). @)

Subtracting (22) from (23) we obtain ’

() ()

24

12
-C-'-°— _ ﬂf ~ 2ln l—€— + g-ln
gl b =m A? n

and substituting from (15)

&g4{‘_;+-2-1n(‘11§)}

gL i1 sn &

a2
+2n {(1 * ‘/f) (1 + '1)} 25)
n 1++k/ \1+k

In (20) the restriction that k2 > 1/2 is equivalent to requiring

(b/2a) < 1, since when k% = 1/2, K(k') = K(k). If we make the

somewhat more stringent requirement that (b/a) < 1, which is

equivalent to k% > 0.97, then (25) may be further simplified by

noting that for k ~ 1, cné ~ sech &; sn ¢ ~ tanh {; and
& ~ (mg/2b). Thus

Co nygf?_ 2y (sinh fﬁ)} _ AC (26
goL b n 2b &L

where
Ac @n

a3 (GR) ()
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An alternative form of (26) may be obtained by using the follow-
ing identity: ‘

‘ - o(mg/2b)
sinh (g%) = ¢ : (28)
1 + coth (24
. 2b
with the result .
Lo ng[? 4 210 (1 + con T = AC . (29)
&oL b = 2b gL

In this form it is easy to identify the first term in (29) as the
plate capacitance betiveen the stripline and the horizontal walls,
and the second term as the fringing capacitance between the
edges of the stripline and the side walls. For large gaps, the
fringing term approaches (8/z) In 2, as expected [7, p. 515].

It is interesting to note that the first term on the right-hand
side of (29) is the same formula given by Chen [7] and originally
derived by Cohn [1]. Cohn’s formula was derived assuming that
the width of the center septum, 2w, was very large compared
to the plate separation, 2b. This is equivalent to assuming that
the two edges of the septum do not interact. AC, then, in (29)
can be interpreted as a correction term needed to account for the
interaction between the two edges. From (27) it can be seen that
AC will be negligibly small if A is near one (or A’ is near zero)
since k is near one. From (15) A’? is given approximately by

2b (30)

- .
A% ~ k2 sinh* (—g—) .
It can be seen from (30) that for small gaps, A’ is always much
less than one. For large gaps, it can be shown that (30) further
reduces to )
A2~ g~ 2ntwib) 3D
by using the approximate expression for the modulus, %, given
by Anderson [8]. From (31) it can easily be verified that A’
will be negligibly small, and hence AC may be neglected if

3 = ‘5 . (32)
In (21) we have the restriction that 42 > 1/2, or equivalently
A? < 1/2. From (31) it can be seen that 1> < 1/2 if

Yo lmo~on
b =g ne=0lL

33)
So for the range: 1/10 < w/b < 1/2, AC is not negligible and
must be calculated using (27), (31), and k ~ 1.

The approximate formula for the capacitance given in (26)
is plotted in Fig. 5 with a dashed line for AC = 0. The exact
formula using (6), (15), and (18) is plotted using a solid line.
The two curves agree almost identically except where w/b < 1/2.
This discrepancy can be attributed, however, to the AC term
which was neglected.

CONCLUSIONS

The exact and an approximate form for the capacitance of
the rectangular-coaxial-strip transmission line have been pre-
sented. The approximate form enables one to, evaluate the edge-
interaction capacitance for a limited range of w/b ratios. For
w/b ratios greater than 1/2, our approximation was shown to
reduce to those obtained by other authors who neglected the
edge-interaction capacitance. Thus we have found the restric-
tions that must be observed when using their approximation.
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Fig. 5. Capacitance of a rectangular-coaxial-strip transmission line,
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A Coplanar Waveguide with Thick Metal-Coating

T. KITAZAWA, Y. HAYASHI, AND
M. SUZUKI, SENIOR MEMBER, IEEE

Abstract—A theoretical method is presented for the analysis of a
coplanar waveguide with thick metal-coating. Numerical results are
given and compared with published data. It is shown that the metal-
coating thickness of the coplanar waveguide causes an increase in wave-
Iength and a decrease in characteristic impedance and that the changes
are about the same as those of a sloft line.

INTRODUCTION

A coplanar waveguide (CPW) has been investigated on the
basis of a quasi-static approximation [1], [2], and recently
Knorr and Kuchler [3] obtained the frequency dependence of
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